Language
English
عربي
Tiếng Việt
русский
français
español
日本語
한글
Deutsch
हिन्दी
简体中文
繁體中文
Home
How To Use
Language
English
عربي
Tiếng Việt
русский
français
español
日本語
한글
Deutsch
हिन्दी
简体中文
繁體中文
Home
Detail
@isabel_jasmine: Hvad kan jeg sige 🤷🏽♀️ #skills #mandelgave #juleaften #nusamlesvi
Isabel
Open In TikTok:
Region: DK
Monday 27 December 2021 10:55:23 GMT
2108
129
23
0
Music
Download
No Watermark .mp4 (
0.74MB
)
No Watermark(HD) .mp4 (
0.42MB
)
Watermark .mp4 (
0MB
)
Music .mp3
Comments
millaavocado6 :
Vil du følge tilbage❤️
2021-12-27 11:03:27
2
Madison :
Samme her 😂😂
2021-12-27 10:59:43
1
Isabel<3 :
Jeg fik den ikke!😌🥰
2021-12-27 11:04:52
1
;) :
@julieb.m.petersen
2021-12-27 11:06:41
1
Chris :
Fyp 😂
2021-12-27 11:26:14
1
𝐴𝑛𝑛𝑎 :
Vil du følge mig💗💗
2021-12-27 12:40:00
1
Machapigen :
Jeg fik mandel for 3 år i streg😅
2021-12-27 13:24:37
1
To see more videos from user @isabel_jasmine, please go to the Tikwm homepage.
Other Videos
He's got his priortites straight😭🙏 #hawktuah #whiplash #talktuah #breakup #fyp #milesteller #melissabenoist
‼️RATE WENDY ORTIZ TOES ‼️ #wendyortiz #evelynortiz #hawaii #fypシ #fyp #clip #shawtybae #latinostiktok #willito #ddg #clips
NVIDIA is training robots using Apple Vision Pro?! NVIDIA's Project GROOT is revolutionizing how we train humanoid robots, they've developed a mind-blowing pipeline that multiplies data by 1000x or more using simulation. 1. Teleoperation with Apple Vision Pro: Using the Apple Vision Pro, human operators can control humanoid robots in real-time, providing immersive first-person control. This allows to collect demonstration data, even though it's time-consuming. 2. RoboCasa Simulation Framework: RoboCasa multiplies this demonstration data by creating diverse virtual environments. For example, a single kitchen setup can be transformed into hundreds of unique ones in simulation, varying textures, furniture, and object placements. 3. MimicGen Augmentation: MimicGen takes it further by generating new robot motion trajectories based on the initial human data. It filters out unsuccessful attempts, creating a vast dataset from limited human input. Traditionally, training robots relied on slow, expensive human data collection. Now, we can trade compute power for that time, allowing robots to learn much faster and in a wider range of situations. This approach addresses the limitations of teleoperation, which is bound by the physical constraints of time and space. By shifting to a simulation-based model, we're trading expensive human data for compute power, breaking barriers in robot training and adaptability. This method could lead to rapid advances in robot capabilities, akin to the breakthroughs we've seen with large language models. #creatorsearchinsights
En mi defensa llevaba prisa y tuve que subirlo rápido 🤭 #rescate #perritos #mascota #perdido #animales
эти котята так мило смущаются😊🥰🤭 тгк: Твоя заряжка
Скинь своей🤗#fyp #жиза
About
Robot
Legal
Privacy Policy