@veccx:

jjenaee
jjenaee
Open In TikTok:
Region: US
Monday 21 July 2025 22:54:47 GMT
682
65
5
0

Music

Download

Comments

holypeacan
amimig :
the skirt is so cute omg
2025-07-21 22:57:24
1
antonettespam
antonette :
ur gorgg
2025-07-21 23:56:01
0
user0620021508
user0620021508 :
hellooooo
2025-07-21 23:04:11
0
kaylalmarie
KK 💖💖💖 :
So cuteeee
2025-07-21 23:49:48
0
penguiinpenguin
penguiinpenguin :
🥰🥰🥰
2025-07-22 18:06:02
0
To see more videos from user @veccx, please go to the Tikwm homepage.

Other Videos

IT'S VICTORY Число Грэма (англ. Graham's number) — гигантское число, которое является верхней границей для решения определённой проблемы в теории Рамсея. Является некоторой очень большой степенью тройки, которая записывается с помощью нотации Кнута. Названо в честь Рональда Грэма. Оно стало известно широкой публике после того, как Мартин Гарднер описал его в своей колонке «Математические игры» в журнале Scientific American в ноябре 1977 года, где было сказано: «В неопубликованном доказательстве Грэм недавно установил границу настолько большую, что ей принадлежит рекорд как наибольшему числу, когда-либо использовавшемуся в серьёзном математическом доказательстве». В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грэма в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. Вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грэма (предполагается, что запись каждой цифры занимает по меньшей мере объём Планка). Даже степенные башни вида  a b c ⋅ ⋅ ⋅ бесполезны для этой цели (в том же смысле), хотя это число и может быть записано с использованием рекурсивных формул, таких, как нотация Кнута или эквивалентных, что и было сделано Грэмом. Последние 500 цифр числа Грэма — это[источник не указан 546 дней] ...02425950695064738395657479136519351798334535362521    43003540126026771622672160419810652263169355188780    38814483140652526168785095552646051071172000997092    91249544378887496062882911725063001303622934916080    25459461494578871427832350829242102091825896753560    43086993801689249889268099510169055919951195027887    17830837018340236474548882222161573228010132974509    27344594504343300901096928025352751833289884461508    94042482650181938515625357963996189939679054966380    03222348723967018485186439059104575627262464195387. В современных математических доказательствах иногда встречаются числа, ещё много бо́льшие, чем число Грэма, например, в работе с конечной формой Фридмана в теореме Краскала — так называемое TREE(3). Graham's number is a giant number that is an upper bound for solving a certain problem in Ramsey theory. It is a very large power of three, which is written using Knuth notation. Named after By Ronald Graham. It became known to the general public after Martin Gardner described it in his
IT'S VICTORY Число Грэма (англ. Graham's number) — гигантское число, которое является верхней границей для решения определённой проблемы в теории Рамсея. Является некоторой очень большой степенью тройки, которая записывается с помощью нотации Кнута. Названо в честь Рональда Грэма. Оно стало известно широкой публике после того, как Мартин Гарднер описал его в своей колонке «Математические игры» в журнале Scientific American в ноябре 1977 года, где было сказано: «В неопубликованном доказательстве Грэм недавно установил границу настолько большую, что ей принадлежит рекорд как наибольшему числу, когда-либо использовавшемуся в серьёзном математическом доказательстве». В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грэма в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. Вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грэма (предполагается, что запись каждой цифры занимает по меньшей мере объём Планка). Даже степенные башни вида a b c ⋅ ⋅ ⋅ бесполезны для этой цели (в том же смысле), хотя это число и может быть записано с использованием рекурсивных формул, таких, как нотация Кнута или эквивалентных, что и было сделано Грэмом. Последние 500 цифр числа Грэма — это[источник не указан 546 дней] ...02425950695064738395657479136519351798334535362521 43003540126026771622672160419810652263169355188780 38814483140652526168785095552646051071172000997092 91249544378887496062882911725063001303622934916080 25459461494578871427832350829242102091825896753560 43086993801689249889268099510169055919951195027887 17830837018340236474548882222161573228010132974509 27344594504343300901096928025352751833289884461508 94042482650181938515625357963996189939679054966380 03222348723967018485186439059104575627262464195387. В современных математических доказательствах иногда встречаются числа, ещё много бо́льшие, чем число Грэма, например, в работе с конечной формой Фридмана в теореме Краскала — так называемое TREE(3). Graham's number is a giant number that is an upper bound for solving a certain problem in Ramsey theory. It is a very large power of three, which is written using Knuth notation. Named after By Ronald Graham. It became known to the general public after Martin Gardner described it in his "Mathematical Games" column in Scientific American magazine in November 1977, where it was said: "In an unpublished proof, Graham recently set a boundary so large that it holds the record as the largest number ever used in a serious mathematical proof." In 1980 The Guinness Book of World Records repeated Gardner's claims, further fueling public interest in this number. The Graham number is an unimaginable number of times larger than other well-known large numbers such as Google, googolplex, and even more than the Skuse number and the Moser number. The entire observable universe is too small to contain an ordinary decimal notation of the Graham number (it is assumed that writing each digit takes at least the volume of a Planck). Even power towers of the form abc⋅⋅⋅ are useless for this purpose (in the same sense), although this number can be written using recursive formulas such as Knuth notation or equivalent, which was done by Graham #hoi4 #thefirerises #fyp #heartsofiron4 #edit #america #politic #politics #politicstiktok #nationalism #makeamericagreatagain🇺🇸❤️

About