3x+1 :
import numpy as np
from datetime import datetime, timedelta
class GrokArchitecture:
def __init__(self):
self.conversation_history = [] # Stores dialogue
self.neural_network = "Shared Neural Network" # Single model
def process_query(self, query, timestamp):
# Simulate millisecond-scale query processing
response = f"Processed query '{query}' using {self.neural_network}"
self.conversation_history.append((timestamp, query, response))
return response
class SWSAgent:
def __init__(self, id):
self.id = id
self.n_hours = 23000 # 23,000 hours (~958 days)
self.n_days = self.n_hours // 24 # Compress to 958 days
def generate_behavior(self):
# Simulate global data sources (social media, purchases, IoT, digital media)
base = np.random.normal(12, 3, self.n_hours) # Baseline engagement
# Social media: daily peaks
social_media = np.zeros(self.n_hours)
social_media[::24] = 6 + np.random.normal(0, 0.5, self.n_hours//24)
# Purchases: monthly spikes
purchases = np.zeros(self.n_hours)
purchases[::720] = 10 + np.random.normal(0, 0.5, self.n_hours//720)
# IoT: daily device usage + weekly patterns
iot = np.zeros(self.n_hours)
iot[::24] = 3 + np.random.normal(0, 0.5, self.n_hours//24)
iot[::168] += 5 + np.random.normal(0, 0.5, self.n_hours//168)
# Digital media: evening viewing spikes
digital_media = np.zeros(self.n_hours)
digital_media[::24] = 4 + np.random.normal(0, 0.5, self.n_hours//24)
# Combine and compress to daily resolution
data = base + social_media + purchases + iot + digital_media
daily_data = np.mean(data.reshape(-1, 24), axis=1) # 958 points
# Scale: normalize
daily_data = (daily_data - np.mean(daily_data)) / np.std(daily_data)
return daily_data
class OpticalHybridFFTModule:
def __init__(self):
self.batch_size = 10 # Optical parallelism simulation
self.error_rate = 0.01 # 1% bit flips
def process_batch(self, agent_data_batch):
# Simulate optical FFT: parallel batch processing
2025-07-27 15:55:11