I have my proxy and panel now
you can't oppress me anymore 😂
2025-09-21 01:00:17
37
Alqodri25 :
135 97 111 83 0 200
2025-10-06 12:32:01
3
Lucas :
De acordo com meus cálculos:
= x+79 - x² = x + 7Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V= π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx19 V = x[-x-12 y x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx 19 V = x[-x-12x3-7 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32 9 - x² y= x+79 - x² = x + 7Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V= π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx19 V = x[-x-12 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx 19 V = x[-x-12x3-7 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32) yg anda tau 9 - x² y= x+79 - x² = x + 7Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V= π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx19 V = x[-x-12 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx 19 V = x[-x-12x3-7 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + y= x+79 - x² = x + 7Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V= π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx19 V = x[-x-12 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx
V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2 - 14x + 32)dx 19 V = x[-x-12x3-7 y= x+79 - x² = x + 7 Maka x = 1 dan x = -2 V = π112(9-x2)² - (x + 7)2dx V = π12(x4-18x²+81)-(x² +14x +49)dx V = π/12(x4 - 19x2=tabolquel